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Scope&of&this&talk&

•  Discuss the impact of the 
technologies developed 
for numerically intensive/
exascale computing on 
data-intensive computing 
and the broader industrial 
computing infrastructure.  

•  Framing the problem 
–  Numerically Intensive 

•  Exascale Architectural 
Issues 

–  Data Intensive 
•  Characteristics  

•  Probable impacts of the 
pursuit of exascale on 
specific technical areas 
and industry 

•  Conclusions 
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•  Scaling(standard(solu/ons(will(not(work(
–  Massive&number&of&cores/data&sizes&magnify:&

•  Power&inefficiencies&

•  The&need&to&exploit&concurrency&for&highBperformance&

•  Bandwidth&needs&&
•  To(achieve(the(next(level(of(supercompu/ng(performance(we(

need(to(address(these(issues(
–  SoluDons&to&these&issues&will&impact&data&intensive&compuDng&
industry&

Exascale&Architectural&Issues &&
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•  This(talk(will(focus(on(the(most(scalable(data(intensive(
approach:(
–  Map&reduce&ecosystem&

•  Server&infrastructure&
–  Clusters&of&“a&few&thousand&processors,”&with&disk&storage&
associated&with&each&processor&from&pool&of&10^6&processors&

•  Large&database&community&driver&

–  Success&of&this&approach&B&Thousands&of&processors,&terabytes&
of&data,&tenth&of&second&response&Dme&

•  Other(data(intensive(approaches(include:(
–  NoBSQL&datastores&
–  Massive&graph&processing&

–  Time&criDcal&financial&analyDcs&

Data&Intensive&Approaches&
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Numerically(Intensive( Data(Intensive(

Hardware& Nodes&and&
Interconnect&

High&performance&and&
power&

Lower&performance&
and&power&

Storage& Separate,&independent&& Integrated&

SW& SynchronizaDon& Tightly&coupled& Loosely&coupled&

Reliability& Checkpoint&restart& ReplicaDon&

Workload& Number&of&Users& Single&per&node& MulDple&per&node&

Data& Dynamic,&heterogeneous&
(unstructured&grid)&

StaDc,&
homogeneous&
(text,&images)&

Algorithms& Global& Distributed&

Workflow& Scheduling& Batch& InteracDve&

Resource&Tasking& Specific& Abstract&

Analysis& Offline&postBprocessing& Online&

I/O& Bulk&parallel&writes& Streaming&writes&

A&characterizaDon&of&numerically/compute&intensive&versus&data&intensive&approaches&&
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Numerically/Compute&Intensive&and&Data&Intensive&–&IntersecDng&Approaches&

Ian Gorton, Paul Greenfield, Alex Szalay, Roy Williams, "Data-Intensive 
Computing in the 21st Century," Computer, pp. 30-32, April, 2008  
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Leveraging&the&Success&of&Both&Approaches &&
•  Commoditization of 

scalable data intensive 
approaches 
–  Success for high-performance 

computing community 
•  Data intensive workloads 

currently simpler than 
numerically intensive 

•  Competitive pressure to 
improve data intensive 
algorithms and services 

–  60% potential increasing retailers’ 
operating margins possible with big data 

–  “Big data: The next frontier for innovation, competition, and 
productivity”, McKinsey Global Institute, May 2011 

 

Opportunity for cross 
pollination…  
Is it possible to? 

–  Simplify the numerically 
intensive approach and 
still achieve high 
performance? 

–  Increase the 
sophistication of data 
intensive approach and 
while retaining simplicity 
and flexibility?  
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An&Example&of&IntegraDng&Numerically&and&Data&Intensive&
Approaches&/&VISIO&

•  Use Hadoop Distributed 
File System (HDFS) 
instead of Lustre  
–  with ParaView 

visualization application 
–  3x improvement and 

reduced variance in read 
times 

•  Compose relevant parts 
of each ecosystem 
–  Did not use map reduce 

scheduler 
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•  Target(hardware(–(exascale(architecture(with(burst(buffer(
•  Applica/on(D(CoGL(
•  SoHware(solu/on(D(PISTON(

A&Materials&Example&
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PotenDal&Exascale&Architecture&
Possible)CollecKon)of)Trinity)

Components)

Burst)Buffer)Nodes)Gateway)Nodes)

Compute)Nodes) Other)Node)Types)

External)Parallel)File)System)

To)Site)WAN)



Burst&Buffer&Overview&

•  A(Burst(Buffer(is(a(device(designed(to(shield(compute(nodes(
from(the(bandwidth(limits(of(the(diskDbased(parallel(file(
system(by(providing(a(pool(of(fast(flash(memory.(

•  Current(Prototypes:(
–  A&set&of&x86_64&servers&with&locally&aiached&disks&that&are&
aiached&to&both&the&compute&fabric&as&well&as&the&storage&fabric.&

•  Primary(Use:(Faster(Checkpoint/Restart(
•  Secondary(Use:(Perform(InDTransit(Data(Analysis(

–  Focus&of&funded&LDRDBER&exploraDon.&



ApplicaDon&B&CoGL&

•  A(proxy(app(being(developed(for(
the(Exascale(CoDDesign(Center(for(
Materials(in(Extreme(Environments((

•  StandDalone(mesoDscale(simula/on(
code(

•  Studies(paTern(forma/on(in(
ferroelas/c(materials(using(the(
Ginzburg–Landau(approach(

•  Models(cubicDtoDtetragonal(
transi/ons(under(dynamic(strain(
loading(

•  Based(on(a(nonlinear(elas/c(freeD
energy(in(terms(of(the(appropriate(
strain(fields(



Portable,&Parallel&CoGL&with&inBsitu&

•  SimulaDon&code&and&inBsitu&viz&
implemented&using&PISTON,&our&
portable,&dataBparallel&viz&and&
analysis&library&built&on&NVIDIA’s&
Thrust&library&

•  Allows the exact same code to 
run efficiently on all parallel 
architectures supported by 
backend (currently including 
GPUs with CUDA and multi-core 
CPUs with OpenMP) 

•  When&running&on&GPUs,&“interop”&
allows&fast&rendering&by&eliminaDng&
unnecessary&data&transfers&

•  Much faster than original Fortran 
code&
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Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980 

PISTON: A Portable Data-Parallel Visualization and Analysis 
Framework 

!  Goal: Portability and performance for visualization and analysis operators on current and 
next-generation supercomputers 

!  Main idea: Write operators using only data-parallel primitives (scan, reduce, etc.) 

!  Requires architecture-specific optimizations for only for the small set of primitives 

!  PISTON is built on top of NVIDIA’s Thrust Library 

LAB
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Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980 

Motivation and Background 

●  Current production visualization software does not take full advantage of acceleration 
hardware and/or multi-core architecture 

●  Research on accelerating visualization operations are mostly hardware-specific; few were 
integrated in visualization software 

●  Standards such as OpenCL may allow program to run cross-platform, but usually still requires 
many architecture specific optimizations to run well 

●  Data parallelism: independent processors performs the same task on different pieces of data 
(see Blelloch, “Vector Models for Data Parallel Computing”)  

●  Due to the massive data sizes we expect to be simulating we expect data parallelism to be a 
good way to exploit parallelism on current and next generation architectures 

●  Thrust is a NVidia C++ template library for CUDA. It can also target other backends such as 
OpenMP, and allows you to program using an interface similar the C++ Standard Template 
Library (STL) 
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Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980 

Brief Introduction to Data-Parallel Programming 
and Thrust 

 

●  Sorts 

●  Transforms 

●  Reductions 

●  Scans 

●  Binary searches 

●  Stream compactions 

●  Scatters / gathers 

 

 

 

Challenge: Write operators in 
terms of these primitives only 
 
Reward:  Efficient, portable code&

What algorithms does Thrust provide? 
&
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Potential Exascale Architecture Possible)CollecKon)of)Trinity)
Components)

Burst)Buffer)Nodes)Gateway)Nodes)

Compute)Nodes) Other)Node)Types)

External)Parallel)File)System)

To)Site)WAN)



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980 

PISTON: Single Node Accelerated Architectures 
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Potential Exascale Architecture Possible)CollecKon)of)Trinity)
Components)

Burst)Buffer)Nodes)Gateway)Nodes)

Compute)Nodes) Other)Node)Types)

External)Parallel)File)System)
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Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980 

PISTON: Distributed Memory Architectures 

●  Inter-node (distributed memory) parallelism 

●  VTK Integration handles domain 
decomposition / image compositing 

●  Distributed implementations of Thrust 
primitives using MPI 

–  User can treat data as single vectors 
even though values are distributed 
across nodes 

–  Regular Thrust primitives are called 
for on-node work, so it takes 
advantage of parallelism both on 
nodes and across nodes 

–  Implemented isosurface and KD-tree 
construction algorithms using 
distributed PISTON 

Distributed&Scan&
Algorithm&

Isosurface&of&3600x2400x42&ocean&temperature&data&computed&on&4&
GPUs&

LAB
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PISTON: Distributed Memory Architectures 
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Potential Exascale Architecture Possible)CollecKon)of)Trinity)
Components)

Burst)Buffer)Nodes)Gateway)Nodes)

Compute)Nodes) Other)Node)Types)

External)Parallel)File)System)

To)Site)WAN)



•  Extend(PISTON(to(handle(streaming(data(
–  Compute&on&data&located&anywhere&without&requiring&a&preBload&
into&node&memory.&

–  Data&can&be&streamed&from&disk,&compute&nodes,&external&
sources&(including&sensors),&etc.&

•  Add(Data(Architecture(Support(to(PISTON:(
–  Execute&PISTON&funcDons&/&parDal&pipelines&where&data&resides&
rather&than&moving&the&data.&

•  Ex.)&Data&ReducDon&OperaDons&
–  Ex.)&Execute&on&burst&buffer&nodes&while&data&is&resident&rather&
than&having&to&reload&from&disk&at&a&laier&Dme.&

–  Explore&possibility&on&running&on&addiDonal&architectures&
including&storage&controllers&(ARM),&Power&(IBM&data&soluDons),&
etc.&

PISTON:&Streaming&&&Data&Architectures&
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